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Abstract—Software Product Lines (SPLs) are families of
related software systems distinguished by the set of features
each one provides. Over the past decades SPLs have been the
subject of extensive research and application both in academia
and industry. SPLs practices have proven benefits such as better
product customization and reduced time to market. Testing SPLs
pose additional challenges stemming from the typically large
number of product variants which make it infeasible to test every
single one of them. In recent years, there has been an extensive
research on applying Combinatorial Interaction Testing (CIT) for
SPL testing. In this paper we present the first systematic mapping
study on this subject. Our research questions aim to gather
information regarding the techniques that have been applied,
the nature of the case studies used for their evaluation, and
what phases of CIT have been addressed. Our goal is to identify
common trends, gaps, and opportunities for further research and
application.

I. INTRODUCTION

Software Product Lines (SPLs) are families of related sys-
tems whose members are distinguished by the set of features
they provide [1], [2]. Over the last two decades, extensive
research and practice both in academia and industry clearly
attest to the significant benefits of applying SPL practices [2],
[3], [4]. Among these benefits are better customization, im-
proved software reuse, and faster time to market. Variability
is the capacity of software artifacts to vary and its effective
management and realization lie at the core of successful SPL
development [5]. However, variability poses special challenges
for SPL testing because variable artifacts can typically result
in a large number of different software products which most
of the times cannot be all tested individually.

Combinatorial Interaction Testing (CIT) is a testing method
that models a System Under Test (SUT) as a set of factors
(choice points or parameters) each taking its values from a
particular domain [6]. CIT has a wealth of research literature
and has been successfully applied to different types of software
systems [7], [8], [9]. It is precisely this capability to deal
with multiple combinations of parameters that has attracted the
interest of the SPL community. In recent years, there has been

2015 IEEE Eighth International Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW)
4th International Workshop on Combinatorial Testing (IWCT 2015)
978-1-4799-1885-0/15/$31.00 c©2015 IEEE

an increasing number of publications that propose applications
of CIT concepts and techniques for SPL testing. When applied
to SPLs, the set of factors to consider for the combinations
are the features that the systems of an SPL provide which are
expressed using variability models.

The increasing number of publications of CIT for SPLs
what prompted us to perform a systematic mapping study to
provide an overview of the research on this subject [10], [11],
[12]. In contrast with a systematic literature review whose
goal is primarily to identify best practice [10], [12], [13],
[14], our general goal was to identify the quantity and the
type of research and results available, and consequently unveil
open research problems and opportunities for the CIT and SPL
communities. For this first mapping study our concrete goals
were to identify the techniques, algorithms and tools that have
been used for CIT of SPLs, the CIT phases where they have
been used [6], the publication fora employed, and to catalogue
the case studies used for evaluation and their provenance.
The latter goal aimed at identifying common case studies that
could be used as the basis for a benchmark for comparing and
contrasting different approaches.

Our study corroborated the increasing interest in applying
CIT techniques to SPLs. We found that most of the research
has been focused on finding the products that represent the
SPL in the testing scenario based on a variability model, rather
than on actually performing the tests. Our study also found that
the most common technique used is greedy algorithms. Fur-
thermore we corroborated the need for more robust empirical
evaluations including a community-wide benchmark to guide
the comparison of different approaches and to identify topics
to be considered in future studies. Part of our future work
is adding new research questions, perform a more in depth
analysis and a revised search for primary sources.

The paper is structured as follows. Section II presents the
basic concepts of the most common variability models and our
canonical running example. Section III makes the connection
between CIT and SPL terminology. Section IV presents the
process we followed in our systematic mapping study. It
describes the research questions addressed, how the search
was performed, the classification scheme used, and how the
data was extracted and analysed. Section V presents the results
obtained for each research question, while Section VI analyzes



the findings and highlights open questions and avenues worth
of further investigation. Section VII identifies possible threats
to validity for our mapping study. Section VIII describes
related literature reviews and surveys of CIT and SPL testing.
Section IX summarizes the conclusions of our study and
sketches our future work.

II. FEATURE MODELS AND RUNNING EXAMPLE

There are several alternatives of variability models to ex-
press the set of feature combinations that constitute a SPL [15].
However, the most common one is feature models [16], which
we use to illustrate and define the relevant concepts of CIT
applied to SPLs. In this type of diagrams, features are depicted
as labelled boxes and their relationships as lines, collectively
forming a tree-like structure.

As a running example, we use a canonical SPL that has
been extensively used in the SPL community. This SPL is
called the Graph Product Line (GPL) and its products are
combinations of basic graph algorithms and graph types [17].
Figure 1 shows the feature model of GPL. In this example,
a product has feature GPL (the root of the feature model)
which contains its core functionality, and a driver program
(Driver) that sets up the graph examples (Benchmark)
to which a combination of graph algorithms (Algorithms)
are applied. The graphs (GraphType) can be either directed
(Directed) or undirected (Undirected), with optional
weights (Weight). Two graph traversal algorithms (Search)
can be optionally provided: Depth First Search (DFS) or
Breadth First Search (BFS). A product must provide at least
one of the following algorithms: numbering of nodes in the
traversal order (Num), connected components (CC), strongly
connected components (SCC), cycle checking (Cycle), short-
est path (Shortest), minimum spanning trees with Prim’s
algorithm (Prim) or Kruskal’s algorithm (Kruskal).

In a feature model, each feature has just one parent feature
and can have any number of child features. A child feature can
only be selected in a feature combination of a valid product if
its parent feature is selected as well. The exception is the root
feature that does not have any parent and it is always selected
in any software system of a SPL.

A feature can be mandatory or optional which means that
if its parent is selected respectively it must be selected or
that it may or may not be selected. Mandatory features are
denoted with a filled circle while optional feature are denoted
with empty circles. For example, features Algorithms and
GraphType are mandatory, while feature Search is op-
tional.

Furthermore, features can be grouped together in two
different ways. Exclusive-or groups are depicted as empty arcs
crossing over the lines connecting a parent feature with its
child features. They indicate that exactly one of the features
in the group must be selected whenever the parent feature
is selected. For example, if feature GraphType is selected,
then either feature Directed or feature Undirected must
be selected. Inclusive-or groups are depicted as filled arcs
crossing over a set of lines connecting a parent feature with its
child features. They indicate that at least one of the features in
the inclusive-or group must be selected if the parent is selected.
An example is feature Algorithms from which at least one

of the features Num, CC, SCC, Cycle, Shortest, Prim, or
Kruskal must be selected.

Features can have additional relations across the branches
of feature models. These relations are called Cross-Tree Con-
straints (CTCs) and as well as hierarchical feature relations
they are usually expressed and checked using propositional
logic, for further details refer to [18]. Some examples of
CTCs are shown textually in Figure 1. For instance, Num
requires Search means that whenever feature Num is
selected, feature Search must also be selected. As another
example, Prim excludes Kruskal means that both fea-
tures cannot be selected at the same time for any product. Now
we present the basic definitions on which CIT for SPL testing
terminology is defined in the next section.

Definition 1: Feature list. A feature list (FL) is the list of
features in a feature model.

The FL for the GPL feature model is [GPL,

Driver, Benchmark, GraphType, Directed,

Undirected, Weight, Search, DFS, BFS,

Algorithms, Num, CC, SCC, Cycle, Shortest,

Prim, Kruskal].

Definition 2: Feature set. A feature set fs is a 2-tuple
[sel,sel] where fs.sel and fs.sel are respectively the
set of selected and not-selected features in a system part of a
SPL. Let FL be a feature list, thus sel,sel ⊆FL, sel∩sel =
∅, and sel∪sel=FL. Wherever unambiguous we use the term
product as a synonym of feature set.

Definition 3: Valid feature set. A feature set fs is valid
with respect to a feature model fm iff fs.sel and fs.sel
do not violate any constraints described by fm. The set of all
valid feature sets represented by fm is denoted as FSfm.

GPL has 73 distinct valid feature sets. Table I shows 12
of such valid feature sets, where selected features are ticked
(X) and unselected features are empty. An example of a
valid feature set is fs0 that computes the algorithms Cycle,
Num, and SCC on Directed graphs using DFS search.
Thus, the selected features are fs0.sel={GPL, Driver,

GraphType, Search, Algorithms, Benchmark,

Directed, DFS, Num, SCC, Cycle}, and the
unselected features fs0.sel={Weight, Undirected,

BFS, CC, Shortest, Prim, Kruskal}. Consider
now another feature set gs with selected features SCC and
Undirected, that is, {SCC,Undirected} ⊂ gs.sel.
This feature set is invalid because these features violate
the CTC that establishes that whenever feature SCC is
selected then feature Directed must be selected, i.e. SCC
requires Directed.

III. COMBINATORIAL INTERACTION TESTING FOR

SOFTWARE PRODUCT LINES

When CIT is applied to SPLs, rather than testing the
complete SPLs, the goal is to select a representative subset
of products where interaction errors are likely to occur, based
on a variability model [19]. In this section, we present the basic
terminology of CIT for SPLs based on our previous work [20].

Definition 4: t-set. A t-set ts is a 2-tuple [sel,sel] rep-
resenting a partially configured product, defining the selection



Fig. 1: Graph Product Line Feature Model [17].

TABLE I: Sample Feature Sets of GPL

FS GPL Dri Gtp W Se Alg B D U DFS BFS N CC SCC Cyc Sh Prim Kru
fs0 X X X X X X X X X X X

fs1 X X X X X X X X X

fs2 X X X X X X X X X X X X X

fs3 X X X X X X X X X X X

fs4 X X X X X X X X X X X X

fs5 X X X X X X X X

fs6 X X X X X X X X X X X

fs7 X X X X X X X X

fs8 X X X X X X X X X X X X X

fs9 X X X X X X X X

fs10 X X X X X X X X X X

fs11 X X X X X X X X X X X

Driver (Dri), GraphType (Gtp), Weight (W), Search (Se), Algorithms (Alg), Benchmark (B), Directed (D), Undirected (U),
Num (N), Cycle (Cyc), Shortest (Sh), Kruskal (Kru).

of t features of the feature list FL, i.e. ts.sel ∪ ts.sel ⊆ FL
∧ ts.sel ∩ ts.sel = ∅ ∧ |ts.sel ∪ ts.sel| = t. We say t-set
ts is covered by feature set fs iff ts.sel ⊆ fs.sel ∧
ts.sel ⊆ fs.sel.

Definition 5: Valid t-set. A t-set ts is valid in a feature
model fm if there exists a valid feature set fs that covers ts.
The set of all valid t-sets for a feature model is denoted with

VT Sfm.

Definition 6: t-wise covering array. A t-wise covering
array tCA for a feature model fm is a set of valid feature

sets that covers all valid t-sets in VT Sfm. Formally, tCA ⊆
P(FSfm) where ∀ts ∈ V TSfm, ∃fs ∈ tCA such that fs
covers ts.

We now illustrate these concepts for t=2 or pairwise
testing. From the feature model in Figure 1, a valid 2-set
is [{Driver},{Prim}]. It is valid because the selection
of feature Driver and the non-selection of feature Prim

do not violate any constraints. As another example, the 2-
set [{Prim,Weight}, ∅] is valid because there is at least
one feature set, for instance fs2 in Table I, where both
features are selected. The 2-set [∅, {Kruskal,Prim}]
is also valid because there is at least one valid feature

set that does not have any of these features selected, for
example feature set fs0. Notice however that the 2-set
[∅,{Directed, Undirected}] is not valid. This is
because feature GraphType is present in all the feature
sets (mandatory child of the root) so either Directed or
Undirected must be selected. GPL has 418 valid 2-sets,
therefore a 2-wise covering array must contain all these pairs
covered by at least one feature set. Table I is an example of a
covering array for GPL [21].

IV. SYSTEMATIC MAPPING STUDY

Evidence-Based Software Engineering (EBSE) is a young
software engineering research area whose main goal is ”to pro-
vide the means by which current best evidence from research
can be integrated with practical experience and human values
in the decision making process regarding the development and
maintenance of software” [22]. Systematic mapping studies are
one of the approaches championed by EBSE. Their purpose
is to provide an overview of the available research and results
within an area of knowledge, and categorize them according
to different criteria such as type, frequency, publication forum,
etc. [11]. In our mapping study, we followed the protocol
proposed by Petersen et al. [11]. It consists of five processes



Fig. 2: Systematic Mapping Study Process [11].

shown in Figure 2. Next we describe each of the processes
and how they were performed for our mapping study. In
Section V we present the results obtained, and in Section VI
their analysis.

A. Definition of Research Questions

Recall that the goal of our mapping study is to gather
information and characterize the existing work on CIT applied
to SPLs. Our mapping study focuses on the following research
questions:

• RQ1.What are the techniques that have been used
for CIT in SPLs?
Rationale: There has been a large number of tech-
niques and algorithms developed for CIT that have
been surveyed and analyzed (e.g. [9]), however their
application focusing to SPL testing has not been
collectively mapped and studied. Comparing and con-
trasting the CIT techniques applied to SPLs with those
applied for general software systems could shed light
on potential research avenues for further exploration.

• RQ2. What phases of CIT have been explored for
SPLs?
Rationale: Recent work by Yilmaz et al. divides CIT
approaches in two big phases [6]: i) what phase whose
purpose is to select a group of products for testing,
and ii) how phase whose purpose is to perform the
test on the selected products. Our objective with this
research question is to categorize the existing literature
according to these two phases and to detect any
possible research gaps that could be further addressed.

• RQ3. What are the case studies used for evaluation
of the CIT approaches applied to SPLs and what is
their provenance?
Rationale: From our previous experience in the sub-
ject [23], we observed that CIT approaches for SPLs
employ a range of different case studies that come
from academic, open source, or industrial sources. The
goal of this question is to gather information regarding
case study use for identifying common case studies
that could be used to develop a benchmark for eval-
uation. Additionally, the provenance information can
help us determining the maturity of the approaches,
as industrial or open source examples tend to be more
demanding and challenging.

• RQ4. What are the publication fora used?
Rationale: Identifying publication fora can help re-
searchers and practitioners keep abreast with develop-
ments in the area as well as target future publications.

B. Conduct Search for Primary Sources

In this step of the systematic mapping study the search
terms are defined. We selected two sets of terms, one for SPLs
and a second one for CIT that cover the basic concepts found
in the corresponding research subjects. The terms are shown
in Table II.

TABLE II: Summary of SPL and CIT Search Terms.

SPL terms: software family, product family, software
product family, software product line, SPL, product line,
feature model, feature diagram, variability modeling

CIT terms: combinatorial interaction testing, CIT, com-
binatorial testing, pairwise testing, n-wise testing, inter-
action testing, covering array, t-way testing

The search was performed in the following two stages:

• Publishing companies and general search engines. We
utilized the search engines provided by ScienceDirect,
IEEExplore, ACM Digital Library, SpringerLink, and
Google Scholar. These engines cover the main publi-
cation venues of the specialized journals, conferences,
and workshops in both SPLs and general software
engineering. Google Scholar was also used to search
other publication outlets such as technical reports and
dissertations.

• Snowballing readings. This stage implies using the
reference list or citations of the identified papers to
further search other sources [12], [24]. Additionally,
we followed the guidelines proposed by Wohlin et al.
that considers what other publications the identified
papers are referenced by [24]. This stage was per-
formed manually following the citation links provided
by the publishing companies and Google Scholar.

The queries we performed took all the combinations of SPL
terms and CIT terms. The searches included the title, abstract,
and keywords of the papers, and additionally their contents
whenever supported by the search engine. The following



fragment of a query is an example used in the IEEExplore
engine1:

("product line") AND ("combinatorial

interaction testing" OR "CIT" OR

"combinatorial testing" OR "pairwise

testing" OR "n-wise testing" OR

"interaction testing" OR "covering

array" OR "t-way testing")

C. Screening of Papers for Inclusion and Exclusion

We looked for the search terms in the title, abstract and
keywords. When necessary we also looked for details at the
introduction or other places of the papers such as the evaluation
section. The only criteria for inclusion in our mapping study
was that a clear application of CIT techniques to SPL testing
was presented. For exclusion criteria, we did not consider
publications whose SPL testing techniques that bore no relation
to CIT or were not written in English.

D. Keywording using Abstracts — Classification Scheme

We classified our articles into four dimensions that corre-
spond to each question our mapping study addresses.

1) CIT techniques classification: For this dimension we
consider each type of technique or algorithm used by the
CIT approaches. Some examples of such techniques are
constraint programming, evolutionary computation, or greedy
algorithms [25], [26], [27]. It should be pointed out that a
paper can rely on more than one technique to implement
CIT or use multiple techniques for comparison. Our mapping
study considers these two cases. If one category may subsume
another we report the most specific one for classification2.

2) CIT phases classification: As mentioned in Sec-
tion IV-A, our mapping study classifies the articles into the two
main phases of CIT (the what and the how phases) according
to the recent work of Yilmaz et al. [6].

3) Case studies and their provenance classification: For
this classification we considered the type of variability model
used for expressing the valid combinations of products of the
SPL from which a subset is selected for testing. Examples
of variability models are feature models or constraint models.
Regarding provenance, we use the following categories:

• SPLOT3 which is a repository for feature models
widely used within the SPL research community.

• Random when the variability model of a case study is
generated randomly.

• Open source when case studies come from open
source projects.

• Academic when the case studies come from academia,
either from research papers or projects mostly carried
out at universities or research institutions.

1Some search queries had to be broken down into smaller queries because
of the limitations of the search engines. Nonetheless our queries considered
all possible combinations of SPL and CIT search terms.

2For example, if a paper uses an algorithm such as SPEA2, it is classified
as multi-objective evolutionary algorithm but not as a genetic algorithm.

3http://www.splot-research.org/

• Industrial when the case studies are part of actual
industrial applications.

• Undefined when it was not possible to ascertain the
provenance of a case study.

• None when no case studies were used for evaluation.

For each case study we also recorded the availability of the
variability model that describes its combinations of products
(e.g. feature model) and the actual implementation of the case
study (i.e. source code and other artifacts needed for their
execution).

4) Type of publication fora classification: The classifica-
tion of publication fora was straightforward because we used
the name of the journal, conference, workshop or book where
the publication appeared.

E. Data Extraction and Mapping Study

We followed the next steps for gathering the data of our
mapping study:

1) We created a guideline document defining each of the
classification terms and an spreadsheet to collect the
classification information. The spreadsheet contained
the following data fields: i) CIT techniques used, ii)
rationale for the categorization if any needed, iii) CIT
phases addressed, iv) rationale for the categorization
if any needed, v) type of variability model(s), vi)
availability of variability model(s), vii) availability of
implementation artifacts, viii) provenance of the case
study(ies), ix) rationale for the categorization if any
needed, x) a general field for any other remarks.

2) We formed two groups to carry out the classification
task independently.

3) We held a meeting to pilot the classification terms.
For this meeting each group had independently col-
lected the data for some selected primary sources.
The results obtained were compared and contrasted,
and all the discrepancies were analyzed and clarified.

4) The two teams performed the classification of all
primary sources independently.

5) We held a second meeting to discuss the classification
for every single paper for each criterion.

V. RESULTS

In this section we present and describe the results ob-
tained in our systematic mapping study. As mentioned in
Section IV-B, we first performed search queries in specialized
repositories and search engines. These queries were performed
between 11th December 2014 and 17th December 2014 and
produced a total of 1,631 hits. As a second step we sieved the
articles based on the title, abstract and keywords, resulting in
38 papers. For the third step, we looked into the introduction
and other relevant parts of the papers. This resulted in the
exclusion of 1 paper. The reason for excluding this paper was,
that it was not in an SPL context. For the fourth step we
performed snowballing readings, resulting in 10 more papers.
The selection of these readings followed the same screening
process of the third step. The four steps and their results are
summarized in Figure 3. Appendix A lists the 47 articles that



form the primary sources of our mapping study presented in
the order they were found. TABLE III: Primary Sources and CIT Techniques

Technique Acronym Primary Sources Identifiers
Constraint Handling CH S21
Constraint CP Sl, S3, S13, S18, S25, S2~ S3~

Programming S37
Evolntionary EA SIO, S32, S35
Algorithm (1+1)
Exact Mnlti-Objective EMOA Sl9
Algorithm
Generic GE S2, Sll, S24, S27, S33, S36
Genetic Algorithm GA S16, S40, S45, S47
Greedy algorithm GRE S4, S5, S8, S14, S15, S17, S22,

S23, S28, S29, S31, S34, S38
Model-Based MB S43
Mnlti-Objective Evo- MOEA S20, S44, S46
Intionary Algorithm
Random Search RS S41
Simnlated Annealing SA S14, S23, S39, S42
Static Analysis STA S7, S9, Sl2
Statistical Test ST S6

37 articles

Detailed
Screening

1,631 hits
IRepositories,

Search Engines

10 articles1----..1®
•47 articles

Fig. 3: Steps of search and primary sources selection TABLE IV: Primary Sources and CIT Phase

CIT Phase Primary Sources Identifiers

The first interesting result of our mapping study is the
growth in number of publications over time as shown in
Figure 4. From 2006 to 2010 we observed a low number
of publications, followed by a sharp increase since 2011.
The peak of publications was in 2013 where the number of
publications doubled those from 2012. For 2014 the number
of publications seems to decrease. However this could be
because the digital libraries where still missing some of the
recent publications. The latest paper is to be published in a
journal in 2015, but was already online available at the time
we performed our search.

What Sl, S2, S3, S4, S5, S6, S8, S9 SIO, Sll, S12, S13, S14,
S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25,
S26, S27, S28, S29, S30, S31, S32, S33, S34, S35, S36,
S37, S38, S39, S40, S41, S42, S43, S44, S45, S46

How Sl, S3, S7, S9, S13, S14, S18, S22, S31, S45, S47

technique was GE (GEneric) with 6 publications, followed
by SA (Simulated Annealing), GA (Genetic Algorithm), EA
(Evolutionary Algorithm), MOEA (Multi-Objective Evolution
ary Algorithm) and STA (Static Analysis). The remaining
references were spread out among the remaining 5 techniques.

16
16
14
12
10

8
6
4
2
o '----~--_~_---___r_---"_L-

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Fig. 4: Publications per year

A. Results RQl - Techniques Usage

Table III shows the CIT techniques found by our mapping
study, the acronyms we use to refer to them, and the primary
sources for each technique. We introduced a technique cate
gory Generic for techniques not specific to a particular CIT
technique, but that can be used for any approach. For instance
visualization (e.g. [S24]), reduction of t-wise tests, benchmark
outline [S33], etc. Notice that a publication can employ more
than one CIT technique, for instance Sl4 uses GRE and SA.

The first thing to notice in Table III is the large and
diverse set of CIT techniques used, making a total of 13.
The most used technique was GRE (GREedy algorithms),
with 13 publications. Following this came CP (Constraint
Programming) with 8 publications. The third most frequent

B. Results RQ2 - CIT Phases

Table IV lists the primary sources associated with the CIT
phases described in Section IV-A. The what phase represents
the selection of products to test, that represent the entire SPL.
The how phase is concerned with the execution of tests and
also using information from the test runs to refine the selection
or order of the products to test (e.g. code coverage).

It is quite remarkable that the majority of publications were
categorized in the first phase (i.e. what phase), 45 publications.
Only 11 publications focus on the how phase of CIT, whereby
9 of them cover both phases. This leaves only two publications
that have an exclusive focus on the how phase, one by Kim et
al. [S7], who reduce the number of products to test during test
execution and one by Wang et al. [S47] on test prioritization.
In Section VI we analyze and discuss these findings.

C. Results RQ3 - Case Studies and their Provenance

In total the 47 publications found in our study contain
170 different case studies. Table V list the 12 most frequently
used ones. The table shows the name of the case study, its
provenance (P), the primary sources that included it and if a
variability model (VM) or the source code are available.

The first thing to notice here is that most of the case
studies are from the SPLOT repository. This is representative
for all the publications, because most of the case studies where



TABLE V: Primary Sources and Case Study Provenance

Case Study P Primary Sources Identi-

fiers

VM Code

Linux Kernel O S8, S10, S5, S34, S42 X X

Violet O S2, S5, S16, S34 X X

Arcade Game S S2, S23, S30, S37 X

Coche Ecologico S S2, S21, S23, S30, S32,
S35, S37, S41, S46

X

Electronic Shopping S S5, S21, S22, S23, S29,
S30, S34, S37, S41

X

Model Transformation S S2, S22, S30, S37, S41,
S46

X

Printers S S2, S21, S22, S32, S35,
S41

X

Sienna S S23, S30, S37, S40 X

Smart Home S S5, S14, S30, S34, S37,
S44, S46

X

Video Player S S21, S22, S32, S35, S41,
S46

X

Web portal S S22, S23, S30, S37 X

Eclipse O S8, S15, S31, S34 X

O = Open Source, S = SPLOT

taken from SPLOT or a similar repository. However, for most
cases there is no source code available. The second most
used type of case studies are open source projects. Here the
source code is available, but it can be hard to find a variability
model for these systems. Five of our primary sources used
randomly generated variability models, and only one paper
did not clearly define the provenance of the used case studies
(i.e. Undefined). Furthermore 4 publications did not have case
studies at all, since they did not conduct an experiment (i.e.
None). Finally 11 publications included industrial case studies
and 11 academic ones. For these types it is usually very hard
or even impossible to get access to the variability model or
source code.

The majority of our sources, 39 papers, use feature models
as variability models. Four papers use sets of constraints, two
use a Orthogonal Variability Model and two use a Multi-
Perspective Feature Model respectively.

D. Results RQ4 – Publication Fora

We divided the publications in three groups: conferences,
journals, and miscellaneous. The last group contains workshop
papers, technical reports, and dissertations. The division was
made to reflect length, nature and maturity of the sources
analyzed. Our study found 14 conference fora, 3 journal fora,
and 9 miscellaneous. Table VI shows the primary sources
categorized along these three groups.

As one could expect the most frequent venues for pub-
lications are the most prominent conferences and workshops
for SPL, respectively SPLC with 7 publications and Vamos
with 5. These were followed with 3 publications by TSE,
which makes it the most frequent journal in our sources.
ICSTW (a specialized workshop in software testing) also has
3 publications. Followed by MODELS and SPLCW with 2
publications each. The remaining publications were more or
less evenly spread out.

In summary out of the 47 primary sources, 24 correspond
to conference fora, 5 to journal publications, and 18 to mis-
cellaneous publications. We believe these numbers denote on

one hand a clear interest among several communities in the
research at the intersection of CIT on SPLs, but on the other
hand they also highlight that this research area is still very
young (e.g. very few journal publications and many workshop
publications).

VI. ANALYSIS

In this section we analyze the findings revealed by our
systematic mapping study. We refer to some of the relevant
primary sources and shortly discuss open questions and po-
tential areas for further research.

A. CIT Phases

As discussed in Section IV-A we distinguish CIT in two
phases, the what phase and the how phase. However we
observed that the majority of publications to date focus on
the what phase. Though we believe that there are possibilities
for investigation in both phases, the what phase seems to be
better researched already, which means there a multiple areas
open for further research on the how phase, such as exploiting
variability knowledge at run time as done by Kim et al. who
use run time information to reduce the number of products.
They analyze which code is executed by which tests and check
if other products have any difference along the execution path.
If not, it is assumed that they do not have to be tested [S7].

B. Multi-Objective Optimization

Quite often SPL problems require the optimization of
multiple and sometimes contradicting objectives. For example
the minimization of the sizes of SPL test suites and the
maximization of their t-wise coverage. The work by Lopez-
Herrejon et al. proposes an exact algorithm that computes
the true Pareto front of feature models using SAT solvers
and presents scalability issues for larger feature models [S19].
Lopez-Herrejon et al. also provided a comparison of four clas-
sical multi-objective evolutionary algorithms (i.e. NSGA-II,
PAES, MOCell, and SPEA2) for the computation of pairwise
testing and analyzed three different seeding strategies for the
initial population [S20]. There are only two publications that
use multi-objective optimization in our primary sources. This
leaves possibilities for further investigations using other multi-
objective algorithms, including more optimization objectives
that consider information such as control-flow.

C. Definition of a Community-Wide Benchmark

Our systematic mapping study found that feature models
from the SPLOT repository were the most common type of
variability model used for CIT on SPLs. However, the selection
of which feature models to analyze in each paper seemed to be
arbitrary, at worst, or partially-justified, at best. A community-
wide benchmark could effectively help to objectively compare
different CIT techniques. Such a benchmark should not only
provide both the variability model and source code or artifacts,
but also a set of metrics beyond covering array size or
execution time. The importance of such a benchmark has
already been expressed by Cohen et al. in [S36], and further
was advocated by Lopez-Herrejon et al. [S33] who provide a
first list of candidate case studies.



TABLE VI: Publication Fora

Acronym Primary Sources Identifiers Publication Name

Conference Publications
AOSD S9 International Conference on Aspect-Oriented Software Development
ASE S12 International Conference on Automated Software Engineering

CAISE S40 Conference on Advanced Information Systems Engineering
CEC S20 IEEE Congress on Evolutionary Computation

EuroPLoP S8 European Conference on Pattern Languages of Programs
ESEC/FSE S7 Joint Meeting - European Software Engineering Conference and the Symposium on the Foundations of Software Engineering

GECCO S16, S44 Genetic and Evolutionary Computation Conference
HASE S21 International IEEE Symposium on High-Assurance Systems Engineering
ICSM S19 International Conference on Software Maintenance
ICST S22, S43 International Conference on Software Testing, Verification and Validation

ICTSS S31 International Conference on Testing Software and Systems
ISSRE S37 International Symposium on Software Reliability Engineering
ISSTA S36 International Symposium on Software Testing and Analysis

MODELS S5, S15 International Conference on Model Driven Engineering Languages and Systems
SPLC S13, S14, S17, S30, S45, S46, S47 International Conference Software Product Lines

Journal Publications
ESE S39 Empirical Software Engineering
JSS S28 Journal of Systems and Software
TSE S27, S35, S38 IEEE Transactions on Software Engineering

Miscellaneous Publications
CoRR S32, S33, S42 Computing Research Repository

ICSTW S23, S25, S41 Workshop International Conference on Software Testing, Verification and Validation
PhdThesis S34 PHD thesis
PLEASE S26 International Workshop on Product Line Approaches in Software Engineering

ROSATEA S11 Workshop on Role of Software Architecture for Testing and Analysis
SPLCW S1, S10 International Conference Software Product Lines Workshop Proceedings
Vamos S2, S3, S4, S6, S18 International Workshop on Variability Modelling of Software-intensive Systems

VariComp S29 International Workshop on Variability and Composition
VISSOFT S24 Working Conference on Software Visualization

VII. THREATS TO VALIDITY

We face similar validity threats as any other systematic
mapping study. A first threat to validity is related to the
selection of paper repositories and the search queries applied
to them. To address this threat we used the major bibliography
search engines and carefully chose a selection of search terms
covering SPL and CIT. A second threat is related to the
classification scheme for CIT phases. We used the phases
defined by Yilmaz et al. [6] for our classification, to adress
this threat. A third threat to validity is related to the selection
of criteria to include and exclude publications. In this case the
only criteria was that a clear application of a CIT approach to
SPL testing was presented. To give a more comprehensive view
of the area we included all types of publications, from non-
peer-reviewed to journal publications. A fourth threat is related
to the extraction of data for the classification. To address this
threat, we carried out the classification using commonly-agreed
terms, that were piloted and used by two independent groups.
Subsequently we held a meeting discussing our classification
results until a consensus was reached.

VIII. RELATED WORK

There exists an extensive body of literature on CIT and SPL
testing. In this section we briefly describe the salient studies
and surveys on both subjects.

CIT studies. Grindal et al. surveyed 16 different combi-
nation strategies along which they classified salient research
literature [7]. Furthermore, they proposed a hierarchy for
coverage criteria. Nie and Leung performed a general survey
in CIT testing [8]. Their work provides an overview of the
evolution of CIT research and a classification scheme for state
of the art. Additionally, they put forward a set of directions
for future research on CIT. Similarly, Ahmed and Zamli

perfomed a short review that focused on the computation of
covering arrays and illustrate some of their applications [28].
A most recent and extensive survey has been presented by
Khalsa and Labiche who performed an analysis of 75 CIT
algorithms and tools [9]. Their work considers factors such
as type of techniques, generation strategies, selection criteria,
and coverage strength. In contrast with our work, none of these
surveys address the domain of SPL testing.

SPL testing studies. Two contemporary systematic map-
ping studies in SPL testing [29], [30], provide a wide overview
of the area. They focus on categorizing SPL approaches
along criteria within the domain of SPL such as handling
of variability and variant binding times, as well as other
aspects like test organization and process. A recent literature
review categorized SPL testing strategies into two fundamental
aspects: the selection of the products to test, and the actual
testing of the products [31]. Despite the extensive work carried
out on both of these aspects, the authors found that there
is still a great lack of empirical industrial applications. This
latter finding also corroborates the importance of proposing a
benchmark (albeit not with industrial applications) on which
to measure and compare different CIT approaches applied
to SPLs. In contrast with these studies, our work focuses
on identifying the techniques, algorithms, and tools used for
CIT in SPLs as well as cataloguing the case studies used for
evaluation with the goal of identifying common examples to
constitute the basis of a benchmark.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we present the results of our mapping study
on applications of CIT techniques on SPLs. Our study corrob-
orated the increasing interest in applying CIT techniques to
SPLs, as was shown by the increasing number of publications
over the last years. The majority of publications focus on



the what phase of CIT. The most common technique used is
greedy algorithms. Our work revealed opportunities for future
research, for example, in developing community-wide testing
benchmarks, leveraging more information with multi-objective
optimization, and investigating in ways to better utilize the
how phase. We hope this mapping study not only serves to
highlight the main research topics on the subject, but also
inspires researchers and practitioners to explore subjects at the
intersection of both research communities. Part of our future
work is to perform a more in depth analysis on the primary
sources our study identified, for instance, why there has been
more focus on the what phase, and why are some techniques
more frequently used, and if there are any common techniques
representing constraints, and what is the status of the tool
support in this area.

ACKNOWLEDGMENT

This work has been supported by the competence centers
programme COMET - Competence Centers for Excellent
Technologies of the Austrian Research Promotion Agency
(FFG) and the Austrian Science Fund (FWF) project P25289.

REFERENCES

[1] D. S. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” IEEE Trans. Software Eng., vol. 30, no. 6, pp. 355–371,
2004.

[2] K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line

Engineering: Foundations, Principles and Techniques. Springer, 2005.

[3] F. J. van d. Linden, K. Schmid, and E. Rommes, Software Product Lines

in Action: The Best Industrial Practice in Product Line Engineering.
Springer, 2007.
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